Sunday, September 13, 2020

Entropy and time's arrow

When contemplating the mysteries of time ... what is it, why is it how it is, why do remember the past but not the future ... it's seldom long before the second law of thermodynamics comes up.

In technical terms, the second law of thermodynamics states that the entropy of a closed system increases over time.  I've previously discussed what entropy is and isn't.  The short version is that entropy is a measure of uncertainty about the internal details of a system.  This is often shorthanded as "disorder", and that's not totally wrong, but it probably leads to more confusion than understanding.  This may be in part because uncertainty and disorder are both related to the more technical concept of symmetry, which may not mean what you might expect.  At least, I found some of this surprising when I first went over it.

Consider an ice cube melting.  Is a puddle of water more disordered than an ice cube?  One would think.  In an ice cube, each atom is locked into a crystal matrix, each atom in its place.  An atom in the liquid water is bouncing around, bumping into other atoms, held in place enough to keep from flying off into the air but otherwise free to move.

But which of the two is more symmetrical?  If your answer is "the ice cube", you're not alone.  That was my reflexive answer as well, and I expect that it would be for most people.  Actually, it's the water.  Why?  Symmetry is a measure of what you can do to something and still have it look the same.  The actual mathematical definition is, of course, a bit more technical, but that'll do for now.

An irregular lump of coal looks different if you turn it one way or another, so we call it asymmetrical.  A cube looks the same if you turn it 90 degrees in any of six directions, or 180 degrees in any of three directions, so we say it has "rotational symmetry" (and "reflective symmetry" as well).  A perfect sphere looks the same no matter which way you turn it, including, but not limited to, all the ways you can turn a cube and have the cube still look the same.  The sphere is more symmetrical than the cube, which is more symmetrical than the lump of coal.  So far so good.

A mass of water molecules bouncing around in a drop of water looks the same no matter which way you turn it.  It's symmetrical the same way a sphere is.  The crystal matrix of an ice cube only looks the same if you turn it in particular ways.  That is, liquid water is more symmetrical, at the microscopic level, than frozen water.  This is the same as saying we know less about the locations and motions of the individual molecules in liquid water than those in frozen water.  More uncertainty is the same as more entropy.

Geometrical symmetry is not the only thing going on here.  Ice at -100C has lower entropy than ice at -1C, because molecules in the colder ice have less kinetic energy and a narrower distribution of possible kinetic energies (loosely, they're not vibrating as quickly within the crystal matrix and there's less uncertainty about how quickly they're vibrating).  However, if you do see an increase in geometrical symmetry, you are also seeing an increase in uncertainty, which is to say entropy. The difference between cold ice and near-melting ice can also be expressed in terms of symmetry, but a more subtle kind of symmetry.  We'll get to that.


As with the previous post, I've spent more time on a sidebar than I meant to, so I'll try to get to the point by going off on another sidebar, but one more closely related to the real point.

Suppose you have a box with, say, 25 little bins in it arranged in a square grid.  There are five marbles in the box, one in each bin on the diagonal from upper left to lower right.  This arrangement has "180-degree rotational symmetry".  That is, you can rotate it 180 degrees and it will look the same.  If you rotate it 90 degrees, however, it will look clearly different.

Now put a lid on the box, give it a good shake and remove the lid.  The five marbles will have settled into some random assortment of bins (each bin can only hold one marble).  If you look closely, this random arrangement is very likely to be asymmetrical in the same way a lump of coal is: If you turn it 90 degrees, or 180, or reflect it in a mirror, the individual marbles will be in different positions than if you didn't rotate or reflect the box.

However, if you were to take a quick glimpse at the box from a distance, then have someone flip a coin and turn the box 90 degrees if the coin came up heads, then take another quick glimpse, you'd have trouble telling if the box had been turned or not.  You'd have no trouble with the marbles in their original arrangement on the diagonal.  In that sense, the random arrangement is more symmetrical than the original arrangement, just like the microscopic structure of liquid water is more symmetrical than that of ice.

[I went looking for some kind of textbook exposition along the lines of what follows but came up empty, so I'm not really sure where I got it from.  On the one hand, I think it's on solid ground in that there really is an invariant in here, so the math degree has no objections, though I did replace "statistically symmetrical" with "symmetrical" until I figure out what the right term, if any, actually is.

On the other hand, I'm not a physicist, or particularly close to being one, so this may be complete gibberish from a physicist's point of view.  At the very least, any symmetries involved have more to do with things like phase spaces, and "marbles in bins" is something more like "particles in quantum states".]

The magic word to make this all rigorous is "statistical".  That is, if you have a big enough grid and enough marbles and you just measure large-scale statistical properties, and look at distributions of values rather than the actual values, then an arrangement of marbles is more symmetrical if these rough measures measures don't change when you rotate the box (or reflect it, or shuffle the rows or columns, or whatever -- for brevity I'll stick to "rotate" here).

For example, if you count the number of marbles on each diagonal line (wrapping around so that each line has five bins), then for the original all-on-one-diagonal arrangement, there will be a sharp peak: five marbles on the main diagonal, one on each of the diagonals that cross that main diagonal, and zero on the others.  Rotate the box, and that peak moves.  For a random arrangement, the counts will all be more or less the same, both before and after you rotate the box.  A random arrangement is more symmetrical, in this statistical sense.

The important thing here is that there are many more symmetrical arrangements than not.  For example, there are ten wrap-around diagonals in a 5x5 grid (five in each direction) so there are ten ways to put five marbles in that kind of arrangement.  There are 53,130 total ways to put 5 marbles in 25 bins, so there are approximately 5,000 times as many more-symmetrical, that is, higher-entropy, arrangements.  Granted, some of these are still fairly unevenly distributed, for example four marbles on one diagonal and one off it, but even taking that into account, there are many more arrangements that look more or less the same if you rotate the box than there are that look significantly different.

This is a toy example.  If you scale up to, say, the number of molecules in a balloon at room temperature, "many more" becomes "practically all".  Even if the box has 2500 bins in a 50x50 grid, still ridiculously small compared to the trillions of trillions of molecules in a typical system like a balloon, or a vase, or a refrigerator or whatever, the odds that all of the balls line up on a diagonal are less than one in googol (that's ten to the hundredth power, not the search engine company). You can imagine all the molecules in a balloon crowding into one particular region, but for practical purposes it's not going to happen, at least not by chance in a balloon at room temperature.

If you start with the box of marbles in a not-very-symmetrical state and shake it up, you'll almost certainly end up with a more symmetrical state, simply because there are many more ways for that to happen.  Even if you only change one part of the system, say by taking out one marble and putting it back in a random empty bin adjacent to its original position, there are still more cases than not in which the new arrangement is more symmetrical than the old one.

If you continue making more random changes, whether large or small, the state of the box will get more symmetrical over time.  Strictly speaking, this is not an absolute certainty, but for anything we encounter in daily life the numbers are so big that the chances of anything else happening are essentially zero.  This will continue until the system reaches its maximum entropy, at which point large or small random changes will (essentially certainly) leave the system in a state just as symmetrical as it was before.

That's the second law -- as a closed system evolves, its entropy will essentially never decrease, and if it starts in a state of less than maximum entropy, its entropy will essentially always increase until it reaches maximum entropy.


And now to the point.

The second law gives a rigorous way to tell that time is passing.  In a classic example, if you watch a film of a vase falling off a table and shattering on the floor, you can tell instantly if the film is running forward or backward: if you see the pieces of a shattered vase assembling themselves into an intact vase, which then rises up and lands neatly on the table, you know the film is running backwards.  Thus it is said that the second law of thermodynamics gives time its direction.

As compelling as that may seem, there are a couple of problems with this view.  I didn't come up with any of these, of course, but I do find them convincing:

  • The argument is only compelling for part of the film.  In the time between the vase leaving the table and it making contact with the floor, the film looks fine either way.  You either see a vase falling, or you see it rising, presumably having been launched by some mechanism.  Either one is perfectly plausible, while the vase assembling itself from its many pieces is totally implausible.  But the lack of any obvious cue like pottery shards improbably assembling themselves doesn't stop time from passing.
  • If your recording process captured enough data, beyond just the visual image of the vase, you could in principle detect that the entropy of the contents of the room increases slightly if you run the film in one direction and decreases in the other, but that doesn't actually help because entropy can decrease locally without violating the second law.  For example, you can freeze water in a freezer or by leaving it out in the cold.  Its entropy decreases, but that's fine because entropy overall is still increasing, one way or another (for example, a refrigerator produces more entropy by dumping heat into the surrounding environment than it removes in cooling its contents).  If you watch a film of ice melting, there may not be any clear cues to tell you that you're not actually watching a film of ice freezing, running backward.  But time passes regardless of whether entropy is increasing or decreasing in the local environment.
  • Most importantly, though, in an example like a film running, we're only able to say "That film of a vase shattering is running backward" because we ourselves perceive time passing.  We can only say the film is running backward because it's running at all.  By "backward", we really mean "in the other direction from our perception of time".  Likewise, if we measure the entropy of a refrigerator and its contents, we can only say that entropy is increasing as time as we perceive it increases.
In other words, entropy increasing is a way that we can tell time is passing, but it's not the cause of time passing, any more than a mile marker on a road makes your car move.  In the example of the box of marbles, we can only say that the box went from a less symmetrical to more symmetrical state because we can say it was in one state before it was in the other.

If you printed a diagram of each arrangement of marbles on opposite sides of a piece of paper, you'd have two diagrams on a piece of paper.  You couldn't say one was before the other, or that time progressed from one to the other.  You can only say that if the state of the system undergoes random changes over time, then the system will get more symmetrical over time, and in particular the less symmetrical arrangement (almost certainly) won't happen after the more symmetrical one.  That is, entropy will increase.

You could even restate the second law as something like "As a system evolves over time, all state changes allowed by its current state are equally likely" and derive increasing entropy from that (strictly speaking you may have to distinguish identical-looking potential states in order to make "equally likely" work correctly -- the rigorous version of this is the ergodic hypothesis).  This in turn depends on the assumptions that systems have state, and that state changes over time.  Time is a fundamental assumption here, not a by-product.

In short, while you can use the second law to demonstrate that time is passing, you can't appeal to the second law to answer questions like "Why do we remember the past and not the future?"  It just doesn't apply.

1 comment:

  1. Somehow I missed this and the consciousness post and skipped right to real numbers. I find this particular topic fascinating, and head-numbing.

    When we watch the film of the vase shattering we have no way of knowing that we're not watching a film shown forwards of something happening "backwards."

    You seem to have left out a word in line 2, para 1.

    ReplyDelete